The interaction of visual, vestibular and extra-retinal mechanisms in the control of head and gaze during head-free pursuit
نویسندگان
چکیده
The ability to co-ordinate the eyes and head when tracking moving objects is important for survival. Tracking with eyes alone is controlled by both visually dependent and extra-retinal mechanisms, the latter sustaining eye movement during target extinction. We investigated how the extra-retinal component develops at the beginning of randomised responses during head-free pursuit and how it interacts with the vestibulo-ocular reflex (VOR). Subjects viewed horizontal step-ramp stimuli which occurred in pairs of identical velocity; velocity was randomised between pairs, ranging from ±5 to 40 deg s−1. In the first of each pair (short-ramp extinction) the target was visible for only 150 ms. In the second (initial extinction), after a randomised fixation period, the target was extinguished at motion onset, remaining invisible for 750 ms before reappearing for the last 200 ms of motion. Subjects used motion information acquired in the short-ramp extinction presentation to track the target from the start of unseen motion in the initial extinction presentation, using extra-retinal drive to generate smooth gaze and head movements scaled to target velocity. Gaze velocity rose more slowly than when visually driven, but had similar temporal development in head-free and head-fixed conditions. The difference in eye-in-head velocity between head-fixed and head-free conditions was closely related to head velocity throughout its trajectory, implying that extra-retinal drive was responsible for countermanding the VOR in the absence of vision. Thus, the VOR apparently remained active during head-free pursuit with near-unity gain. Evidence also emerged that head movements are not directly controlled by visual input, but by internal estimation mechanisms similar to those controlling gaze.
منابع مشابه
Coordination of eye and head movements during smooth pursuit in patients with vestibular failure.
During pursuit of smoothly moving targets with combined eye and head movements in normal subjects, accurate gaze control depends on successful interaction of the vestibular and head movement signals with the ocular pursuit mechanisms. To investigate compensation for loss of the vestibulo-ocular reflex during head-free pursuit in labyrinthine-deficient patients, pursuit performance was assessed ...
متن کاملHuman head-free gaze saccades to targets flashed before gaze-pursuit are spatially accurate.
Previous studies have shown that accurate saccades can be generated, in the dark, that compensate for movements of the visual axis that result from movements of either the eyes alone or the head alone that intervene between target presentation and saccade onset. We have carried out experiments with human subjects to test whether gaze saccades (gaze = eye-in-space = eye-in-head + head-in-space) ...
متن کاملRAPID COMMUNICATION Human Head-Free Gaze Saccades to Targets Flashed Before Gaze-Pursuit Are Spatially Accurate
Herter, Troy M. and Daniel Guitton. Human head-free gaze Accurate saccades can also be generated that compensate saccades to targets flashed before gaze-pursuit are spatially accufor movements of the visual axis that result from displacerate. J. Neurophysiol. 80: 2785–2789, 1998. Previous studies have ments of the head-in-space with no concurrent movements shown that accurate saccades can be ge...
متن کاملOcular Motor Function in Patients with Bilateral Vestibular Weakness
Introduction: Patients with bilateral weakness (BW) have many difficulties in gaze stability that interfere with their normal function. The aim of this study was to evaluate ocular motor functions in patients with BW to better understand the problem of gaze instability in these patients. Materials and Methods: Patients were referred from the Otolaryngology Department for Vestibular Assessmen...
متن کاملBrain stem pursuit pathways: dissociating visual, vestibular, and proprioceptive inputs during combined eye-head gaze tracking.
Eye-head (EH) neurons within the medial vestibular nuclei are thought to be the primary input to the extraocular motoneurons during smooth pursuit: they receive direct projections from the cerebellar flocculus/ventral paraflocculus, and in turn, project to the abducens motor nucleus. Here, we recorded from EH neurons during head-restrained smooth pursuit and head-unrestrained combined eye-head ...
متن کامل